
Programming Fundamentals (CS 302)

1

Dr. Ihsan Ullah

Lecturer
Department of Computer Science & IT

University of Balochistan

Outline

p Introduction

p Program development

p C language and beginning with programming

p Compilation steps of a C program

p Variables and their data types

p Format specifiers and escape sequences

p C operators

p Taking input

p Comments
2

Computer Programming

p A program is a set of ordered instructions that enables a

computer to solve a problem

p The process of developing and implementing these

steps is called programming

p Instructions must be provided to the computer in a

systematic order

3

Computer Components

p Hardware

n Physical parts of a computer

n CPU, RAM, etc.

p Software

n A collection of computer programs and data

n Makes use of computer hardware

n Guides the computer at each and every step

4

Types of computer software

p Application software

n To perform specific tasks of computer users

n Word processors, Spreadsheets, Payroll, Accounts

p System software

n Control, operate and monitor the computer through
interacting with the hardware

n An interface between the hardware and the
application software

n Operating systems, device drivers, compilers,
interpreters

5

Programming language

p Enables instructing the computer to perform
specific tasks

p Based on rules of syntax and semantics

p Evolution

n Efficient translation of human language
p High-level syntax, procedural/structured languages

n Complexity management
p Object oriented approach

6

Types of languages

p Low level languages

n Machine oriented languages that interact with the
machine at low level

n Detailed knowledge of computer hardware and its
configuration

n Machine language
p Strings of 0’s and 1’s

p Fast but complex and difficult to debug

n Assembly language
p 0’s and 1’s are replaced by mnemonic codes

p Assembler translates the code into machine language

7

Types of languages

p High level languages

n Use English-like instructions

n Abstracts over the target hardware

n Easy to learn and use

n Desirable if achievable

n COBOL, FORTRAN, Pascal, etc.

n Use compiler/interpreter to translate high level code
instructions into machine language

8

Program development

1. Define the problem

2. Outline the solution

3. Develop the outline into an algorithm

4. Test the algorithm for correctness

5. Code the algorithm into a specific programming
language

6. Run the program on the computer

7. Document and maintain the program

9

Define the problem

p Input

n What we got?

p Output

n What we want to get?

p Processing

n How do we get the desired output from input?

p Area of a rectangle (A=L x W)

10

Outline the solution

p Identification of major steps to solve the problem

p Subtasks involved

p Major variables and data structures (L,W)

p Major control structures

p The underlying logic (A=L * W)

11

Develop the outline into an algorithm

p An algorithm is a specification of precise and
ordered steps that describe the tasks to be
performed to solve a problem (pseudo code)

n Start

n Input L

n Input W

n Calculate Area, A=W * L

n Display output, A

n End

12

Test the algorithm for correctness

p Evaluating the algorithm through test data

p Comparing the obtained results to actual ones

p Correcting logic errors

13

Code the algorithm

p Coding the algorithm using some chosen
programming language

p Language-specific considerations are made
here

14

Run the program on the computer

p Translation of the high-level code into low level

n Correct compile time errors

p Run the compiled code

n Correct runtime errors (incorrect inputs)

n Correct logic errors (incorrect results)

15

Document and maintain the program

p Documentation of steps involved in developing
algorithm and code

p Maintenance and updating of program

16

Outline

p Introduction

p Program development

p C language

p Compilation steps of a C program

p Variables and their data types

p Format specifiers and escape sequences

p C operators

p Taking input

p Comments
17

C Language

p Dennis Ritchie, 1972, Bell Labs.

p Successor of B formerly BCPL (Basic Combined
Programming Language)

p Strongly associated with UNIX

p Incorporate feathers of high level and assembly
languages

p C programs are efficient and fast

p C programs are fairly portable

p C language has a simple and well-structured
syntax

18

A simple C program

#include <stdio.h>

void main(void)

{

printf(“Welcome to C language");

}

19

Use of the built in function,
printf(), to print a simple string
on the screen

instructing the preprocessor to
include header file stdio.h for the
built function printf()

main function declaration. One
main () function is mandatory for
a program to get control from OS

Compilation of a C program

20

Editor

Preprocessor

Compiler

Linker

MyProgram.c, Source file

Modification in memory

MyProgram.o, Object code file

MyProgram.o, Object code file

Variables

p Variable is a space in memory identified through
a given name

p Can represent a numerical value, character or
string of characters

p Variables must be declared at the beginning of a
program with their proper types

p A variable name can contain alphabets, digits
and underscore

p A name cannot start with a digit

p Keywords cannot be used as variable names
21

Variable data types

Data Type Range of Values Space in memory

char or signed char -128 to 127 1 byte

unsigned char 0 to 255 1 byte

int -32768 to 32767 2 bytes

long int -2,147483,648 to 2,147483,647 4 bytes

float 3.4e-38 to 3.4e+38

double 1.7e-308 to 1.7e+308

22

The above-given sizes are the minimum for these
variables. In practice, they depend upon the implemented
compiler

A variable can hold a specific type of data which
must be defined

C Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

23

Format specifiers

Format specifier Variable type

%d int

%c char

%f float

%lf double

%s string

24

Format specifiers are used to format the printed output

Escape Sequences

Escape Code Use

\n New line

\” Double quote

\t Tab space

\\ Backslash

\b backspace

\f Form feed
25

Special characters reserved for specific tasks such as
changing the line or printing some symbol which
perform other tasks when used directly

Example: Format specifiers & escape sequences

include <stdio.h>

void main(void)

{

int a=34;

float b=4.61;

printf(“The value of \”integer\” a=%d \n”,a);

printf(“The value of \”float\” b=%f”,b);

}

26

Arithmetic operators

p Addition, +

p Subtraction, -

p Division, /

p Multiplication, *

p Modulus (remainder), % (9%2=1)

p Increment, ++

p Decrement, --

p Example

n A+B => A and B are operands and + is an operator

27

Assignment operators

p Simple assignment, = (a=4)

p Addition & assignment, += (a+=5 => a=a+5)

p Subtraction & assignment, -+

p Multiplication & assignment, *=

p Division & assignment, /=

p Modulus & assignment, %=

28

Relational operators

p Equal, ==

p Not-equal, !=

p Less than, <

p Greater than, >

p Less than or equal, <=

p Greater than or equal, >=

29

Logical operators

p And (&&) operator returns true if both of its
operands are true

p Or (||) operator, returns true if at least one of its
operands are true

p Not (!) operator reverses the logical state of its
operand (from true to false and from false to
true)

30

Operators’ precedence

Name Operator

Logical NOT !

Arithmetic * / %

Arithmetic +-

Relational < > <= >=

Relational == !=

Logical AND &&

Logical OR ||

Assignment = += -= *= /= %=

31

Parenthesis are evaluated first. This order can be changed
by using parenthesis

Example operators

include <stdio.h>

void main (void)

{

int a=6; int b=3; int c=4; int d;

d=a+b*c-a/b;

printf("d=%d",d);

d++;

printf("d=%d",d);

}
32

Taking input

include <stdio.h>

void main (void)
{

float length, width, area;

printf(“please enter length:”);

scanf(“%f”, &length);

printf(“please enter width:”);

scanf(“%f”,&width);

area=length*width;

printf(“area=%f ”,area);

}

33

Lab task

p Write a program that inputs the radius of a circle
and estimates its area

n A=Pi * r2

34

Comments

p Comments provide information about the
program

p Compiler does not read comments

p Single line comments // .. comments ..

p Multiline comments /* ... comments … */

35

Summary

Now you know,

p What is programming and why we need
programming languages?

p Steps to develop a program

p What is C language?

p Writing simple programs

n Printing on display

n Using variables

n Formatting the output and using escape sequences

n Taking input

n Use of comments
36

