
Programming Fundamentals (CS-302)

1

Dr. Ihsan Ullah

Lecturer
Department of Computer Science & IT

University of Balochistan

(Decisions & Loops)

Outline

p Decisions

n The if statement

n The else statement

n Nested if else

n The switch statement

n Conditional operators

p Loops

n The for loop

n The while loop

n The do while loop

2

The if statement

p The if statement enables to decide whether a statement or a

block of statements will execute or not

p The general form is:

if (condition)

Statement;

n The condition part contains an expression that returns true

or false

n In case the condition is true, the statement is executed, otherwise

the statement is skipped

3

Example 2.1: checking the even number

include <stdio.h>

main()

{

int num;

printf(“Enter a number to check:”);

scanf(“%d”,&num);

if(num%2==0)

printf(“You entered an even number”);

}

4

Flowchart

p Graphical representation of an algorithm

p Symbols

n terminator start or end

n Flow line flow direction

n Parallelogram input/output operation

n Rectangle process

n Diamond Decision or branch

n Connector Junction
5

Example 2.1, Flowchart

6

PRINT Enter a
number to check

INPUT num

is num
divisible
by 2 ?

PRINT
you entered an
even number

START

Stop

yesno

The else statement

p In example 2.1, if an odd number is entered,
nothing is displayed

p How we can display that the number was odd?

p The else statement

p Add before the ending brace of example 2.1

else

printf(“you entered an odd number”);

p A statement in the else part is executed when
the condition in if results into false

7

Example 2.2

include <stdio.h>

main()

{

int num;

printf(“Enter a number to check:”);

scanf(“%d”,&num);

if(num%2==0)

printf(“You entered an even number”);

else

printf(“You entered an odd number”);

} 8

Example 2.2, Flowchart

99

PRINT Enter a
number to check

INPUT num

is num
divisible
by 2 ?

PRINT
you entered an
even number

START

Stop

yesno

PRINT
you entered an

odd number

Multiple statements under if

p To allow executing more than one statement,
depending on the condition in if

if(condition)
{

Statement1;

Statement 2;

…

Statement n;

}

p In case the condition is true, all the statements
within the braces are executed, otherwise the whole
block is skipped

10

Nested if else

p An if statement can be written inside the
body of another if or else

p The condition of the inner if will only be
evaluated if the body of the outer if or else
is executed

p See example nestedIf

11

Outline

p Decisions

n The if statement

n The else statement

n Nested if else

n The switch statement

n Conditional operators

p Loops

n The for loop

n The while loop

n The do while loop

12

The switch case statement

p Choosing one among several options, switch
statement provide a better way of coding

switch(expression) //the result of the expression is matched

{ //with cases

case expr1:

statements;

break; //exits from the switch block

case expr2:

statements;

break;
default: //optional, executed when none of the cases are matched

statements;

} 13

The switch case statement (contd.)

p See example 2.3 for a simple calculator

n Problem?

p Example 2.4 also handles the invalid input

14

Flowchart example 2.4

15

PRINT Enter the
required operation

INPUT operation
(num1 op num2)

Is op equal
to + ?

PRINT a+b

START

Stop

yes

EVALUATE op

Is op equal
to - ?

Is op equal
to * ?

Is op equal
to / ?

PRINT a-b

PRINT a*b

PRINT a/b
PRINT Invalid

operator

yes

yes

yes

No

No

No

No

Conditional operators

p Also called ternary operators (?, :)

p expression 1 ? expression 2 : expression 3

n If expression 1 is true then the returned value will
be expression 2, otherwise it will be expression 3

p Works like one statement if else constructs

if (a<b)
c=b;

else
c=a;

p Can be written as

C=(a<b ? b:a); 16

Example 2.5

include <stdio.h>

main()

{

int num;

printf(“Enter a number to check:”);

scanf(“%d”,&num);

(num%2==0)?printf(“Even”):printf(“Odd”);

}

17

Outline

p Decisions

n The if statement

n The else statement

n Nested if else

n The switch statement

n Conditional operators

p Loops

n The for loop

n The while loop

n The do while loop

18

Loop structure

p Loops enable to execute a statement or a
block of statements more than one time

p Executing the loop body once is called an
iteration

p Three types of loops in C

n for

n while

n do while

19

The for loop

p Syntax

for(initialization; condition; increment/decrement)

{

Statements;

}

20

START

initialization

condition

Increment/decrement

Loop body

STOP

Number from 1 to 10

include<stdio.h>

void main()

{

int i;

for(i=1;i<=10;i++)

printf(“%d\n”,i);

}

21

Generating odd numbers

include <stdio.h>

void main()

{

int a;

for (a=1; a<20; a+=2)

{

printf("%d \n",a);

}

}
22

The while loop

p Syntax

while(condition)

{

statements;

}

p If the condition evaluates true, the body
executes and the process is repeated unless
the condition becomes false

23

While loop contd.

p While loop can be used just like for loop

p Initialization if required, must be done before
the loop

p Increment/decrement can be implemented in
the body of the loop if required

p While loop is more suitable in scenarios where
the number of iterations is not fixed

p See example charcount.c

24

Do while loop

p Syntax
do

{

statements;

}

while(condition);

p In do while loop the body executes before the
condition is checked

p Allows the body to be executed at least once

p Used in scenarios where a statement or more need to
be executed at least once and the repeated
depending on some condition

p See example dowhile-goto.c
25

Goto: labeled jump

p Goto statement is used to transfer control to
a labeled point in the program

p Excessive use of goto is not recommended

p Increases the complexity and reduces the
readability

p Makes debugging (finding & correcting errors)
difficult

p See example dowhile-goto.c

26

Continue statement

p Continue statement is used to skip the
remaining statements in the body of a loop

p Is used with an if statement

p See example continue.c

27

Summary

p Three types of loops

n For

n While

n Do while

p For loop is suitable for already known fixed
number of repetitions

p While loop is suitable when the number of
repetitions are not fixed or known in advanc

p Both can be used interchangeably

p Do while loop is used when the body must
execute at least once

28

