Programming Fundamentals (CS-302)
- I———

(Functions & Pointers

Dr. Ihsan Ullah

Lecturer
Department of Computer Science & IT
University of Balochistan

Outline

Functions
n Introduction
n Function calling

n Function types
Library function
User-defined functions

n Function declaration
Arguments, return type
Passing by value

Pointers
n Passing by reference
n Returning multiple values from a function

Functions: introduction

A function is a block of statements that
performs a specific task

A program in C language may contain several
functions

Every C program contains at least one
function

Only one function of a C program must be
main()

There 1s no limit on the number of functions
In a C program

Function calling

functionl()

Statement-1

main() Statement-2
Statement ||| o~ | -
Statement Statement-n
functionl1();
Statement;
Statement; i

: ’ function?2
function2(); 0
Statement-1

Statement-2

Statement-n

Function calling

A function call transfers the control from the
calling point to the function

As a function finishes its task, control Is
transferred back to the subsequent
statement from the point of calling

Any function can call any other function

Calling sequence may be different from the
sequence functions are written in

Function types

Library functions

n Commonly required functions

n Come with the compiler in the form of a library
n Example: printf(), scanf()

User-defined functions
n Program-specific

n Avolids redundancy (no need to repeat the same
code again and again)

n Divides the code in independent blocks
n Ease of understanding and readability

A simple function

#include<stdio.h>
void main (void)
{
line();
printf(""\t\t Hello");
line();

}

void line() //function header

{

}

Function header

Return-type function-name(argl, arg2)

n Return-type is the type of data a function returns.
Default type is int

n Function-name iIs a unigue name given to the
function

n Arguments or parameters are enclosed in
parenthesis and they are the data required by a
function that are passed at the time of calling

n Variables declared in one function are not available
to other functions in a program

Function prototype

Specification of a prototype enables the
compiler to check for compile time errors
such as number of parameters

Syntax: Function header followed by a
semicolon without the body (void line(void);)

Prototype must be given before a call to the
function Is made

For library functions, prototypes are defined
In header files (stdio.h contains prototypes
for printf() and scanf())

Function with no arguments & no
return value

#include<stdio.h>
void line(void); //prototype
void main (void)
{
line();
printf("\t\t Hello");
line();
}

void line() //function header

{

} 10

Function with arguments but
no return value

#include<stdio.h>
void sum(int, int);
void main (void) {

Int a,b;
printf("enter first number: ");
scanf("%d",&a);
printf("enter second number: ");
scanf("%d",&b);
sum(a,b);

}

void sum(int a, int b) {
printf("'sum = %d",a+b);

}

11

Function with arguments &
return value

#include<stdio.h>
int fact(int);
void main (void) {
int num, res;
printf("enter a number: ");
scanf("%d",&num);
res=fact(num);
printf("Factorial of %d is %d",num,res);
}
int fact(int n) {
int a,fact=1,;
for(a=n;a>l;a--)
fact*=a;
return fact;

}

12

Call by value

All previous examples use call by value

In call by value, the value of a variable is
passed into the function

Any operation performed on the value of that
variable is not reflected in the calling block

13

Call by value check

#include<stdio.h>
void sum(int, int);
void main (void)
{
int a=1, b=1;
sum(a , b);
printf("a and b in main function are %d & %d \n", a, b);

}

void sum(int a, int b){
a++; b++;
printf("\na and b in sum function are %d & %d", a, b);

14

Call by reference

Instead of a value, the address of a variable
IS passed into the function

Through the passed address, a function can
directly operate on the original variable

15

Address versus content

Example int a = 5;
A location in memory Is reserved which is
Identified by a

a Name of location
5 Value at this location
968542 Location number (address)

printf(“%d”,a) will display 5
printf(“%d”,&a) will display the address
(968542)

16

Pointers

A pointer stores the address of a variable
Int a=5;

INt *X;
X=&a, . y
5 968542
968542 968600

printf(“%d”,*a); displays 5
See examples pointer.c and callbyreference.c

17

Returning more than one value

A function can return only one value

Call by reference enables to return more than
one value from a function

call by reference is made possible through
using pointers

To do so, addresses of variables are passed
from the calling function and the called
function directly modifies values at passed
addresses

See example retrnMultiVals.c

18

Recursion

A function which makes a call to itself

A process in which one of the instructions are
to repeat the process

Divides a complex problem into identical
simple cases

A recursive function must have at least one
exit condition otherwise the function will
continue calling itself repeatedly until the
runtime stack overflows

See Example recrus.c

19

Summary

Functions are used to avoid repetitions and
divide the code into separate blocks

Function prototype and declaration specify
the blueprint of a function

Function definition specifies the body of the
function

Pointers hold addresses of other variables

Pointers can be used to pass addresses of
variables into a function and return more than
one value

Recursion is the calling of a function by itself

