
Programming Fundamentals (CS-302)

1

Dr. Ihsan Ullah

Lecturer
Department of Computer Science & IT

University of Balochistan

(Functions & Pointers

Outline

p Functions

n Introduction

n Function calling

n Function types
p Library function

p User-defined functions

n Function declaration
p Arguments, return type

p Passing by value

p Pointers

n Passing by reference

n Returning multiple values from a function
2

Functions: introduction

p A function is a block of statements that
performs a specific task

p A program in C language may contain several
functions

p Every C program contains at least one
function

p Only one function of a C program must be
main()

p There is no limit on the number of functions
in a C program

3

Function calling

4

Statement
Statement
function1();
Statement;
Statement;
function2();

Statement-1
Statement-2
…..
Statement-n

Statement-1
Statement-2
…..
Statement-n

main()

function1()

function2()

Function calling

p A function call transfers the control from the
calling point to the function

p As a function finishes its task, control is
transferred back to the subsequent
statement from the point of calling

p Any function can call any other function

p Calling sequence may be different from the
sequence functions are written in

5

Function types

p Library functions

n Commonly required functions

n Come with the compiler in the form of a library

n Example: printf(), scanf()

p User-defined functions

n Program-specific

n Avoids redundancy (no need to repeat the same
code again and again)

n Divides the code in independent blocks

n Ease of understanding and readability

6

A simple function
#include<stdio.h>

void main (void)

{

line();

printf("\t\t Hello");

line();

}

void line() //function header

{

printf("\n**************************\n"); //function body

}

7

Function header

p Return-type function-name(arg1, arg2)

n Return-type is the type of data a function returns.
Default type is int

n Function-name is a unique name given to the
function

n Arguments or parameters are enclosed in
parenthesis and they are the data required by a
function that are passed at the time of calling

n Variables declared in one function are not available
to other functions in a program

8

Function prototype

p Specification of a prototype enables the
compiler to check for compile time errors
such as number of parameters

p Syntax: Function header followed by a
semicolon without the body (void line(void);)

p Prototype must be given before a call to the
function is made

p For library functions, prototypes are defined
in header files (stdio.h contains prototypes
for printf() and scanf())

9

Function with no arguments & no
return value

#include<stdio.h>

void line(void); //prototype

void main (void)

{

line();

printf("\t\t Hello");

line();

}

void line() //function header

{

printf("\n**************************\n"); //function body

} 10

Function with arguments but
no return value

#include<stdio.h>

void sum(int, int);

void main (void) {

int a,b;

printf("enter first number: ");

scanf("%d",&a);

printf("enter second number: ");

scanf("%d",&b);

sum(a,b);

}

void sum(int a, int b) {

printf("sum = %d",a+b);

}
11

Function with arguments &
return value

#include<stdio.h>

int fact(int);

void main (void) {

int num, res;

printf("enter a number: ");

scanf("%d",&num);

res=fact(num);

printf("Factorial of %d is %d",num,res);

}

int fact(int n) {

int a,fact=1;

for(a=n;a>1;a--)

fact*=a;

return fact;

} 12

Call by value

p All previous examples use call by value

p In call by value, the value of a variable is
passed into the function

p Any operation performed on the value of that
variable is not reflected in the calling block

13

Call by value check
#include<stdio.h>

void sum(int, int);

void main (void)

{

int a=1, b=1;

sum(a , b);

printf("a and b in main function are %d & %d \n", a , b);

}

void sum(int a, int b){

a++; b++;

printf("\na and b in sum function are %d & %d", a, b);

}

14

Call by reference

p Instead of a value, the address of a variable
is passed into the function

p Through the passed address, a function can
directly operate on the original variable

15

Address versus content

p Example int a = 5;

p A location in memory is reserved which is
identified by a

p printf(“%d”,a) will display 5

p printf(“%d”,&a) will display the address
(968542)

16

5

a Name of location

Value at this location

968542 Location number (address)

Pointers

p A pointer stores the address of a variable

int a=5;

int *x;

x=&a;

p printf(“%d”,*a); displays 5

p See examples pointer.c and callbyreference.c
17

5

968542

a

968542

x

968600

Returning more than one value

p A function can return only one value

p Call by reference enables to return more than
one value from a function

p call by reference is made possible through
using pointers

p To do so, addresses of variables are passed
from the calling function and the called
function directly modifies values at passed
addresses

p See example retrnMultiVals.c
18

Recursion

p A function which makes a call to itself

p A process in which one of the instructions are
to repeat the process

p Divides a complex problem into identical
simple cases

p A recursive function must have at least one
exit condition otherwise the function will
continue calling itself repeatedly until the
runtime stack overflows

p See Example recrus.c
19

Summary

p Functions are used to avoid repetitions and
divide the code into separate blocks

p Function prototype and declaration specify
the blueprint of a function

p Function definition specifies the body of the
function

p Pointers hold addresses of other variables

p Pointers can be used to pass addresses of
variables into a function and return more than
one value

p Recursion is the calling of a function by itself
20

