
Programming Fundamentals (CS-302)

1

Dr. Ihsan Ullah

Lecturer
Department of Computer Science & IT

University of Balochistan

(Structures)

Introduction
 A variable can store one element at a time

 An array can store a collection of elements
with the same type

 How to handle a collection of mixed types of
data? Such as Grades and marks

 C language provides structures for a
collection of elements with different types

 Structure can be considered as a user-
defined data type

2

Structure declaration
 A structure is declared through the keyword struct

 The general form is
struct <structure name>

{

 structure element 1 ;

 structure element 2 ;

}

 Declaration of a structure does not reserve any
memory

 Memory is reserved when a structure variable is
defined

3

Example
 A structure storing marks and grade of a student:

struct result

{

int rno;

int marks;

char grade;

} ;

 To define variables of type structure result:
 struct result s1, s2;

 To access elements of structure variable s1:
 s1.rno, s1.marks, s1.grade

 See example struct1.c, strucStr.c

 Modify struct1.c to take input from the user 4

Data types
 Integers

 short, int, long

 On a 32 bit machine occupy 2,4 and 4 bytes respectively

 On a 16-bit machine occupy 2,2 and 4 bytes respectively

 Adding unsigned with all these types increases its storage
limit allowing only positive integers

 The integer range in a two bytes space is -32768 to +32767.
Using unsigned integer allows to store values in range from 0
to 65535

 Characters
 To store character type char is used occupying one byte

 Fractions
 Float, double & long double occupying 4, 8 and 10 bytes

respectively

5

Variable storage classes
 A variable defined in C language refers to

some physical location within the computer

 Such locations are memory and CPU registers

 A storage class determines
 The type of location (memory/register)

 Default initial value

 The scope of a variable (visibility in functions)

 Life of variable

 6

Variable storage classes
 Four storage classes in C

 Automatic

 Register

 Static

 External

7

Automatic storage class
 Storage location is memory

 Its default initial value is unpredictable
(garbage)

 Its scope is within the block in which it is
defined

 Life of automatic variable remains until the
control remains within the same block

 Syntax auto int a; //auto is optional

 Keyword auto is rarely used since it is the
default type

8

Register storage class
 Storage location is CPU registers

 Default initial value is garbage

 Scope is local to the block in which variable is
defined

 life is until the control remains within the
block

 Faster access than the variable stored in
memory

 Syntax: register int a;

 Processed as auto, if free register is not
available

9

Static storage class
 Static variable is stored in memory

 Its default initial value is 0

 Its scope is local to the block in which it is
defined

 Life is until the control remains in the
program (holds its value during function calls)

 Syntax: static int a;

 See example staticVar.c

10

External storage class (global)
 Called global variables

 Storage location is in memory

 Its scope is global to the program

 Life remains throughout the program

 Defined above all functions and remains
visible to all of them

 Default initial value is zero

 See example globalVar.c

11

Name input
 C language does not have a string type

 Strings are stored in character arrays

 To input a string %s is used as a format specifier

 & sign is not required in the scanf() function since
the name of array carries its first address

 See example resultString.c, resultStringInput.c

 To copy a string into another strcpy() function is
used

 To check the equality of two strings strcmp() is
used

12

Array of structures
 Just like arrays of int and char, array of

structures can be created too

 An array of structure is defined as
struct stuctureName varname[array length];

 To access elements of an array of structures,
varname[index number].field

 For a complete example see arrStdResult.c

13

