Programming Fundamentals (CS-302 )

 I———
(Structures)

Dr. Thsan Ullah

Lecturer
Department of Computer Science & IT
University of Balochistan



Introduction

A variable can store one element at a time

An array can store a collection of elements
with the same type

How to handle a collection of mixed types of
data? Such as Grades and marks

C language provides structures for a
collection of elements with different types

Structure can be considered as a user-
defined data type




Structure declaration

A structure is declared through the keyword struct

The general form is
struct <structure name>

{

structure element 1 ;
structure element 2 ;

Declaration of a structure does not reserve any
memory

Memory is reserved when a structure variable is
defined




Example

A structure storing marks and grade of a student:
struct result

{

int rno;
int marks;
char grade;

}:
To define variables of type structure result:
m struct result si, s2;
To access elements of structure variable sli:
m sl.rno, sl.marks, sl.grade

See example structl.c, strucStr.c
Modify structl.c to take input from the user °




Data types

Integers

short, int, long

On a 32 bit machine occupy 2,4 and 4 bytes respectively
On a 16-bit machine occupy 2,2 and 4 bytes respectively

Adding unsigned with all these types increases its storage
limit allowing only positive integers

= The integer range in a two bytes space is -32768 to +32767.

Using unsighed integer allows to store values in range from O
to 65535

Characters
= To store character type char is used occupying one byte

Fractions

= Float, double & long double occupying 4, 8 and 10 bytes
respectively



Variable storage classes

A variable defined in C language refers to
some physical location within the computer

Such locations are memory and CPU registers

A storage class determines

= The type of location (memory/register)

= Default initial value

= The scope of a variable (visibility in functions)
= Life of variable




Variable storage classes

Four storage classes in C
= Automatic

= Register

= Static

= External




Automatic storage class

Storage location is memory

Its default initial value is unpredictable
(garbage)

Its scope is within the block in which it is
defined

Life of automatic variable remains until the
control remains within the same block

Syntax auto int a; //auto is optional

Keyword auto is rarely used since it is the
default type




Register storage class

Storage location is CPU registers
Default initial value is garbage

Scope is local to the block in which variable is
defined

life is until the control remains within the
block

Faster access than the variable stored in
memory

Syntax: register int a;

Processed as auto, if free register is not
available




Static storage class

Static variable is stored in memory
I'ts default initial value is O

I'ts scope is local to the block in which it is
defined

Life is until the control remains in the
program (holds its value during function calls)

Syntax: static int a;
See example staticVar.c

10




External storage class (global)

Called global variables

Storage location is in memory

I'ts scope is global to the program
Life remains throughout the program

Defined above all functions and remains
visible to all of them

Default initial value is zero
See example globalVar.c

11




Name input

C language does not have a string type
Strings are stored in character arrays
To input a string %s is used as a format specifier

& sign is not required in the scanf() function since
the name of array carries its first address

See example resultString.c, resultStringInput.c

To copy a string into another strcpy() function is
used

To check the equality of two strings strcmp() is
used

12




Array of structures

Just like arrays of int and char, array of
structures can be created too

An array of structure is defined as
struct stuctureName varname[array length];

To access elements of an array of structures,
varname[index number].field

For a complete example see arrStdResult.c

13




