
Programming Fundamentals (CS-302)

1

Dr. Ihsan Ullah

Lecturer
Department of Computer Science & IT

University of Balochistan

(Structures)

Introduction
 A variable can store one element at a time

 An array can store a collection of elements
with the same type

 How to handle a collection of mixed types of
data? Such as Grades and marks

 C language provides structures for a
collection of elements with different types

 Structure can be considered as a user-
defined data type

2

Structure declaration
 A structure is declared through the keyword struct

 The general form is
struct <structure name>

{

 structure element 1 ;

 structure element 2 ;

}

 Declaration of a structure does not reserve any
memory

 Memory is reserved when a structure variable is
defined

3

Example
 A structure storing marks and grade of a student:

struct result

{

int rno;

int marks;

char grade;

} ;

 To define variables of type structure result:
 struct result s1, s2;

 To access elements of structure variable s1:
 s1.rno, s1.marks, s1.grade

 See example struct1.c, strucStr.c

 Modify struct1.c to take input from the user 4

Data types
 Integers

 short, int, long

 On a 32 bit machine occupy 2,4 and 4 bytes respectively

 On a 16-bit machine occupy 2,2 and 4 bytes respectively

 Adding unsigned with all these types increases its storage
limit allowing only positive integers

 The integer range in a two bytes space is -32768 to +32767.
Using unsigned integer allows to store values in range from 0
to 65535

 Characters
 To store character type char is used occupying one byte

 Fractions
 Float, double & long double occupying 4, 8 and 10 bytes

respectively

5

Variable storage classes
 A variable defined in C language refers to

some physical location within the computer

 Such locations are memory and CPU registers

 A storage class determines
 The type of location (memory/register)

 Default initial value

 The scope of a variable (visibility in functions)

 Life of variable

 6

Variable storage classes
 Four storage classes in C

 Automatic

 Register

 Static

 External

7

Automatic storage class
 Storage location is memory

 Its default initial value is unpredictable
(garbage)

 Its scope is within the block in which it is
defined

 Life of automatic variable remains until the
control remains within the same block

 Syntax auto int a; //auto is optional

 Keyword auto is rarely used since it is the
default type

8

Register storage class
 Storage location is CPU registers

 Default initial value is garbage

 Scope is local to the block in which variable is
defined

 life is until the control remains within the
block

 Faster access than the variable stored in
memory

 Syntax: register int a;

 Processed as auto, if free register is not
available

9

Static storage class
 Static variable is stored in memory

 Its default initial value is 0

 Its scope is local to the block in which it is
defined

 Life is until the control remains in the
program (holds its value during function calls)

 Syntax: static int a;

 See example staticVar.c

10

External storage class (global)
 Called global variables

 Storage location is in memory

 Its scope is global to the program

 Life remains throughout the program

 Defined above all functions and remains
visible to all of them

 Default initial value is zero

 See example globalVar.c

11

Name input
 C language does not have a string type

 Strings are stored in character arrays

 To input a string %s is used as a format specifier

 & sign is not required in the scanf() function since
the name of array carries its first address

 See example resultString.c, resultStringInput.c

 To copy a string into another strcpy() function is
used

 To check the equality of two strings strcmp() is
used

12

Array of structures
 Just like arrays of int and char, array of

structures can be created too

 An array of structure is defined as
struct stuctureName varname[array length];

 To access elements of an array of structures,
varname[index number].field

 For a complete example see arrStdResult.c

13

